MDAnderson Cancer Center

Making Cancer History®

Next Generation Cellular Therapies for the Treatment of Cancer

Katy Rezvani, M.D., PhD

Chief, Section of Cell Therapy

Professor, Department of Stem Cell Transplantation and Cellular Therapy

Dutch Hematology congress

24th January 2019

Disclosures

- Educational grant:
 - Affimed; Pharmacyclics
- Consultancy/SAB
 - EMD Serono; Adicet Bio; Onkimmune; Formula Pharma;

Role of the Immune System in Cancer Control/Eradication

Two distinct forms of immunity¹

• 1. Sharpe M, Mount N. *Dis Model Mech.* 2015;8:337-350.

Gene Transfer of CARs

Eshhar et al; PNAS 1993

CARs combine an antibody binding domain (scFv) that recognizes a desired tumor associated antigen with one or more T-cell receptor signaling endodomains. Forced expression of CAR on the T-cell surface leads to activation of T cells through CD3 ζ CD28 and/or CD137.

2nd generation CD19 CAR T cells in clinic

Overall Patient Flow and CAR T Cell Therapy Schedule

• The CAR is introduced into T cells using viruses and other means

Treatment Schema

- Patient-specific product; infused in <30 mins
- CAR T cells frozen at \leq -150° C in GMP facility until the subject is ready for infusion
- Subject will be hospitalized for infusion of CAR T cells and remain hospitalized for at least 7 days following treatment

CD19 CAR Therapy for ALL

Eliana Study: Patient characteristics and outcomes

Numbers: 107 screened, 92 enrolled, 75 infused

Patient characteristics, response	Treated patients N=75
Median age in years (range)	11 (3-23)
Female:Male	45/55
Median prior lines of therapy (range)	3 (1-8)
Prior transplant	61%
Med days from enrollment to infusion	45 (30- 105)
Manufacture failure	8%
ORR (CR+CRi) w/i 3 months, all MRD ^{neg}	81%
ORR, Intent to treat	66%
22 relapses: 15 CD19 ^{neg} , 1 CD19 ^{pos} , 6 unknown	
Rate of SCT; all alive	13%

Maude, et al. NEJM 2018; 378:439

FDA Approved August 30, 2017 Relapsed/Refractory Pediatric and Young Adult ALL up to age 25 years \$475,000 per product

Risk Evaluation and Mitigation Strategy (REMS) mandated by FDA for CRS and neurotox

- Dedicated prescribers who are trained in the toxicities
- Ensure that hospitals and clinics have immediate access to tocilizumab

DLBCL – Resolution of multiple bony lesions

Before treatment

1 month after treatment

Zuma-1 Duration of Remission Patients >18 years with Refractory NHL

CR, complete response; NR, not reached; ORR, objective response rate.

Neelapu et al. NEJM 2018

FDA Approved 10-17-2017

\$373,000 per product

axicabtagene ciloleucel

R FOR AUTOLOGOUS & INTRAVENOUS USE ONLY No U.S. standard of potency

Dose: One sterile bag for infusion.

Contents: Maximum of 2 x 10⁸ autologous anti-CD19 CAR T cells in approximately 68 mL suspension containing 5% DMSO USP.

Gently mix the contents of the bag while thawing

See package insert for full prescribing information and instructions for administration Ship and store in vapor phase of liquid nitrogen ≤ -150°C

Manufacturer: Kite Pharma, Inc., El Segundo, CA 90245 Phone: 1-844-454-KITE U.S. Lic. #2064

DO NOT FILTER DO NOT IRRADIATE

Manufactured with gentamicin Not evaluated for infectious substances Preservative free Adults <a>> 18 yrs. with Relapsed/Refractory:

- DLBCL
- 1⁰ Mediastinal LCL
- DLBCL arising from Follicular NHL

REMS program mandated by FDA

AS-00732

Safety of CAR T Cell Therapy

Cytokine release syndrome (CRS) (up to 90%)

- Mediated by high levels of inflammatory cytokines, such as IL-6
- Symptoms include fever, tachycardia, hypotension, and hypoxia

CRS (1-14 days)

Neurologic Events (up to 65%)

- Events are associated with high CAR T cell levels and/or high cytokine levels
- Symptoms include confusion, tremor, aphasia, encephalopathy, and seizures

May occur within minutes or hours but generally appear within days or weeks

Neurologic events

Generally reversible in most patients; rare cases of long-term symptoms¹

CAR-T Cell Therapy: Current State of the Art

- 40-80% of patients with refractory B cell malignancies showing durable complete responses to CD19-CAR T cell therapy
 - CD19 negative antigen escape (up to 1/3 or higher)
 - Contaminating leukemic cell in product may contribute to relapse (Ruella et Nat Med 2018)
- Potent therapy, but associated with unique toxicities:
 - Cytokine Release Syndrome (high fevers, hypotension, hypoxia, multi-organ failure)
 CAR-Related neurotoxicity (aphasia, encephalopathy, seizures, cerebral edema)
 - ~50% of patients require ICU management and fatalities have occured
- Patient-specific and therefore expensive

An off-the-shelf product that can use one donor to treat multiple patients may overcome some of these limitations

NK Cells

- Innate immune system
- CD56+CD3-
- Differentiate in the BM
- No antigen priming
- Primarily in blood
- Recognition takes place through complex array of receptors

T Cells

- Adaptive immune system
- CD3+CD4+ or CD3+CD8+
- Differentiate in the thymus
- Antigen priming required
- Antigen specific
- Recognize targets through TCR rearrangement

NK cell activation depends on the intricate balance between activating and inhibitory receptors

Integration of inhibitory and activating NK cell receptor signals regulates NK decision to kill

In normal cells, the inhibitory signals triggered by KIR-HLA-I molecules engagement overrides activating signals.

Integration of inhibitory and activating NK cell receptor signals regulates NK decision to kill

In the context of cancer, expression of stress ligands for activating receptors, in conjunction with low expression of HLA-I molecules attenuates the triggering of inhibitory receptors and results in an activating signal

An NK mediated GVL effect in Haploidentical T cell depleted SCT for AML

Ruggeri et al, Blood 1999; 94, 339

Allogeneic NK-cells mediate anti-tumor response without inducing GVHD

Ruggeri et al, Science 1999

Advantages of NK cells over T cells for CAR therapy

- NK cells:

- Low/absent risk of GVHD
- activity through their native receptors-
 - synergize with CAR
 - may prevent tumor escape by downregulation of CAR target antigen
- Potential for 'off-the-shelf' allogeneic product, thus increasing accessibility and reducing cost

Limitations of NK cell immunotherapy in the treatment of cancer

- Logistics: NK cells need to be collected on an individual case basis:
 - From a healthy donor (allogeneic source) haploidentical donor or cord blood (MDACC CB Bank)
 - Others use NK92 cell line, HSC or iPSCs
 - From the patient (autologous- *less effective*)
- Limited persistence of adoptively infused NK cells
- <u>Not antigen-specific</u>

Impressive CB-NK expansion from fresh or cryopreserved CB units

CD56

С

CAR NK cells persist & control Raji tumor

Liu et al. Leukemia 2017

Next generation CAR NK cell therapies

- Is CD3zeta-CD28 the best signaling domain for CAR NK cells?
- Can we move beyond CD19 CAR?

Alternative NK signaling domains

FIFTEENTH ANNIVERSARY

Feng J, Call ME, Wucherpfennig KW (2006)

Can we apply CAR NK cell therapy beyond lymphoid malignancies?

- Can we target antigens beyond CD19?
 - T-ALL
 - AML

Features of an Ideal CAR Target

Goal	Activity	Expression
Efficient recognition and targeting by CAR T or NK cells	high on-tumor	 in all tumor cells at high level In many patients
Safe discrimination of target cells by CAR T or NK cells	Low off-tumor	NOT in: - any normal tissue, especially vital tissues - normal counterparts (e.g., HSPCs for AML) - resting/activated T cells

Adapted from Perna 2017, Cancer Cell

Targeting T-cell leukemia

- CAR-mediated therapy against T-cell antigens-
 - Directing CAR-modified T-cells against shared T-cell antigens present on malignant cells could result in self-targeting and fratricide of CAR T-cells, thus compromising therapeutic ability of CAR T cells.
 - higher immunodeficiency impact of T-cell depletion vs B-cell aplasia

Self-targeting and fratricide could potentially be mitigated by using NK cells.

Can we apply CAR NK cell therapy beyond lymphoid malignancies?

- What is the role of checkpoint molecules in NK biology?
 Other genes: TIGIT, LAG3, NKG2A, PD1, Adenosine receptor 2
- Can we target antigens beyond CD19?
 - T-ALL
 - AML

Potential AML CAR Targets

Adapted fromPrzespolewski A, Szeles A, Wang Es. Future Oncology. 2018

Potential limitations of current AML CAR Targets

Antigen	Expression	references
CD33	high on bulk AML cells but lower on LSC \rightarrow difficulty to specifically target LSC	Kenderian Leukemia. 2015 O'Hear Haematologica. 2015
CD123	High on bulk AML and LSC, as well as normal HSC and multiple normal tissues	Gill, Blood. 2014 Mardiros, Blood. 2013 . 2013
CLL1	No CD19 equival	ent 2016
TIM3	AML bulk cells and LSC, also I cells	Kikushige Y, Cell Stem Cell. 2010
FLT3	On normal hematopoietic progenitors as well as on most AML blasts	Chien, ASH 2016
Lewis Y (LeY) antigen	overexpressed on AML cells, with limited expression on normal tissues. \rightarrow toxicity	Peinert, Gene Ther 2010

Clinical trials of CAR T cells in AML

CAR	Author/Center	Results
Anti-Ley-CD28-CD3-ζ chain CAR T	Ritchie/Peter Mc Callum Center 2013	 N=4 1 cytogenetic relapse -> transient cytogenetic remission 2 stable disease No significant toxicity
Anti-CD33-41BBζ CAR T	Wang/Chinese PLA General Hospital	N=1Transient reduction in blastsCytokine release syndrome
CM-CS1 T cells which recognize NKG2D- ligands	Nikiforow/Dana-Farber Cancer Institute National Heart, Lung, and Blood Institute (NHLBI)	N=6 (AML/MDS) No response
CAR123	 Off-the-shelf allogeneic UCAR123 in r/r AML (NCT03190278). Cornell and MDACC Donor-derived CART-123 cells in relapsed AML following allogeneic transplant (NCT03114670) - China CD123/CD28 CAR T cells (NCT02159495). COH 	 Not published yet
		 Presented at ASH 2017

CD123 CAR T results in AML and Blastic Plasmacytoid Dendritic Cell Neoplasm: 3 of 7 responses

(Budde et al. City of Hope ASH 2017)

UPN	Age/Sex; Dx	Prior lines Allo (donor)	BM Blasts; CD123	Cytogenetic s/ Molecular	Lympho- depletion	CAR T dose	Response
136	44/F AML/MDS	6; Y (MRD)	20%; -ve to dim	-7 inv(3)	Flu/Cy	50M donor	PD 40% blasts
138	54/F AML/MPD	4; Y (MRD)	18%; dim to mod	IDH1	Flu/Cy	50M donor	Morphologic leukemic free state
167	43/F AML	4; Y (MRD)	20%; dim	nl	Flu/Cy	200M donor	CRi (MRD-ve by flow on 14)
178	54/F AML	7; Y (MUD)	37%; mod	t(3;7) +21	Flu/Cy	200M Donor (DLI)	SD 20% blasts
195	42/F AML/MDS	6, Y (MRD)	41%; mod	-7.+8	Flu/Cy decitabine	187M Donor(DLI)	SD 46% blasts
200	28/M AML	7, Y (MRD)	3% dim	Complex FLT3-TKD N- RAS	Flu/Cy	200M Donor	CR (MRD+, 0.10% day 28)
203	74/m / BPDCN	1 (sl401 x6 -> PR); No	NED	nl	Flu/Cy	100M	CR

Summary of Adverse Events

Adverse Events	
CRS	Grade 1, N=3 Grade 2, n=1
Neurotoxicity	Dizziness grade 1, N=1; grade 2, n=2 Headeache grade 1, n=5; grade 2 Somnolence grade 1, n=1; grade 1, n=2
Infection	Lung infection grade 3, n=1; grade 4, n=1 Others grade 3, n=1
Most common ≥ grade 3 AEs	Lymphopenia, n=7 Thrombocytopenia, n=6 Febrile neutropenia, n=6

No grade 5 events or DLTs **No myeloablation**

Challenges to the application of CAR therapy in AML

- Heterogeneous antigen expression on diverse AML cell populations
- Potential for off-target toxicities to normal myeloid progenitor and hematopoietic stem cells in patients
- Potential for life-threatening complications CRS/neurotoxicity

Overcoming clonal heterogeneity and antigen escape

Perna et al Cancer Cell 2017

Broadening the targeting milieu of CAR T-cell therapies

	Annotated data	aset
Generate a comprehensive set of AML surface proteins Surface biotinylation & MS identification in panel of AML cell lines (4,862) + Previously reported AML surface targets (346) 	4,942	Adapted from Perna et al Cancer Cell 2017
Select molecules overexpressed in AML vs normal counterparts • Analysis of antigen expression in AML vs normal HSPCs	682	
Quality control • Selection of membrane-associated molecules + • Selection of molecules with ≥ 2 normal tissue proteomics annotation sources	361	
 Select molecules with minimal expression in normal tissues Exclusion of proteins with high expression across all normal tissues 	24	
Flow cytometric analysis in primary AML patient samples 	9	
Flow cytometric analysis • primary healthy BM HSPCs • primary healthy T cells	i 4 ADGF	RE2, CCR1, CD70, and LILRB

Broadening the targets of CAR T-cell therapy in AML – antigen combinations expressed on AML cells

NK cells as an alternative to T cells for CAR therapy in AML

- Exploit the innate features of NK cells along with the CAR for potential synergism.
 - AML cells are highly susceptible to NK mediated killing
 - express ligands for NK activating receptors- MICA, MICB, ULBP
 - Harness 'missing-self' effect select NK cells that are KIR-ligand mismatched with the recipient
 - \rightarrow activity through native NK receptors may prevent tumor escape by downregulation of CAR target antigen

Conclusions

- Clinical trials of CAR therapy in AML are underway at a number of center
- Challenges include choice of antigen and on-target/off-tumor toxicity
- Next generation:
 - Use of a combinatorial CAR T strategy targeting two or more antigens
 or CAR NK cells
 - Suicide approaches to improve safety profile
 - Bridge to transplant

Stem Cell Transplant

Elizabeth J. Shpall Richard Champlin

Faculty

Sairah Ahmed Gheath AlAtrash Amin Alousi Paolo Anderlini **Borje Andersson** Qaiser Bashir Stefan Ciurea Chitra Hosing Jin Im Partow Kebriaei Issa Kouri David Marin Rohtesh Mehta Jeff Molldrem Yago Nieto Amanda Olson Betul Oran Uday Popat Muzaffar Quazilbash

<u>Research Nurses</u>: Bethany Overman Glenda Woodworth Becky Mc Mullin

SCT staff

MD Anderson GMP Facility

Indresh Kaur Enrique Alvarez Daniel Esqueda Suzanne Dworsky Sheetal Rao GMP Techs

AML Group Guillermo Garcia-Manero Hagop Kantarjian

CLL Group Michael Keating Bill Wierda

Sonny Ang **Pinaki Banerjee** Rafet Basar Ana Cortes May Daher Elif Gokdemir Mecit Kaplan Lucila Kerbauy Li Li Junjun Lu Sufang Li Francesca Lim Enli Liu Mayela Mendt Muharrem Muftuoglu Vandana Nandivada Hila Shaim Mayra Shanley Nadima Uprety

Research Lab

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS

RCTS #2017-RP160693

CHRONIC LYMPHOCYTIC LEUKEMIA •

NCI R01- CA061508

MD Anderson AML Moonshot MD Anderson CLL Moonshot MD Anderson lymphoma Moonshot ACT platform

WWW.LLS.ORG