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Introduction  
Genetic abnormalities, such as MYC oncogene rearrangements, contribute to the outcome 
heterogeneity in diffuse large B-cell lymphoma (DLBCL) patients. These rearrangements occur 
in 10-15% of DLBCL patients and have been associated with a poor prognosis. Recently, 
radiomics features extracted from PET/CT scans have shown to be predictive of outcome. The 
aim of this study was to investigate if the ability to predict outcome in DLBCL can be improved 
by combining different clinical, radiomics and genetic features.  
 
Methods  
323 DLBCL patients from the HOVON-84, HOVON-130, and PETAL trials with a baseline 
PET/CT scan and a minimum follow-up of two years were included. MYC status was assessed 
using Fluorescence in situ hybridization (FISH). 245 patients were MYC negative, whereas 25 
patients had a MYC rearrangement and 57 patients had MYC and BCL2 and/or BCL6 
rearrangements. Lesions were delineated using a semi-automated preselection of 18F-FDG 
avid structures defined by a SUV4.0 threshold using the ACCURATE tool. Next, 5 conventional 
PET features (maximum standardized uptake value (SUVmax), SUVpeak, SUVmean, metabolic 
tumor volume (MTV) and total lesion glycolysis and 18 dissemination features were extracted. 
Dissemination features were pertaining to distance between lesions, differences in uptake 
between lesions and differences in volume between lesions. Logistic regression with backward 
feature selection was used to predict 2-year time to progression, defined as time from baseline 
PET/CT to progression. We tested the predictive value of  4 models. 1) a clinical model using 
individual components of the international prognostic index (IPI): Ann Arbor stage (categorical), 
WHO performance status (categorical), lactate dehydrogenase (LDH) levels (dichotomous) 
and age (continuous), 2) a model that included clinical and genetic predictors: MYC status 
(categorical) and IPI components, 3) a model that included radiomics features: 5 conventional 
PET and 18 dissemination features and 4) a model that combined clinical and genetic 
predictors with radiomics features. Model performance was assessed using repeated cross-
validation (5-fold, 1000 repeats) yielding the cross-validated area under the curve of the 
receiver-operator-characteristics curve (CV-AUC). To match prevalence of MYC-positive 
patients with real-world prevalence (Rosenwald et al, JCO 2019) all 245 MYC-negative 
patients were used for each repeat, and 10 MYC-FISH_positive DLBCL patients and 20 



patients with MYC and BCL2 and/or BCL6 rearrangements were selected using random 
stratified sampling. Regression coefficients were averaged over all folds to calculate the 
probability of progression for all patients. High- and low-risk groups were defined based on 
prevalence of events and the diagnostic performance was assessed using positive- and 
negative predictive values.  
 
Results 
The highest model performance for the clinical model was observed when combining Ann 
Arbor stage, LDH and extranodal involvement and yielded in a CV-AUC of 0.69 (95% 
confidence interval (CI): 0.52-0.83). MYC status combined with WHO performance status, LDH 
and extranodal involvement yielded an improved CV-AUC of 0.71 (95% CI: 0.52-0.86). The 
highest model performance for the radiomics model was observed for MTV combined with the 
maximum distance between the largest lesion and any other lesions (Dmaxbulk), the maximum 
difference in SUVpeak between two lesions (DSUVpeakpatient) and the maximum difference in 
volume between two lesions (DVolpatient) yielding a CV-AUC of 0.77 (95% CI: 0.62-0.90). The 
optimal combined model included MYC status, WHO performance status, LDH, MTV, 
Dmaxpatient, DSUVpeakpatient and DVolpatient after backward feature selection and yielded a CV-
AUC of 0.77 (95% CI: 0.60 – 0.90). The positive predictive value was highest for the combined 
model (53.0%) and increased by 20% compared to the optimal clinical model (33.1%). 
Negative predictive values were comparable between models and ranged between 85.8-
88.1%.  
 
Conclusions  
Prediction models using 18F-FDG PET/CT radiomics features at baseline aids in identifying 
DLBCL patients at high risk for relapse. The positive predictive value increased when  
radiomics features were added to the clinical and genetic parameters. Therefore, radiomics 
features can increase the efficiency of clinical trials by only selecting poor prognosis patients. 
 

 
 


