Evil in AML

Ruud Delwel Papendal 2020

Conflict of Interest Disclosure Form

In accordance with the rules of the Health Care Inspectorate (IGZ)

Name: Ruud Delwel

Affiliation: Erasmus MC

I have no potential conflict of interest to report

□ I have the following potential conflict(s) of interest to report

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports:	
Receipt of honoraria or consultation fees:	
Participation in a company sponsored speaker's bureau:	
Stock shareholder:	
Other support (please specify):	
Scientific advisory board	

Blood cell formation in bone marrow

Healthy bone marrow

Acute Myeloid Leukemia (AML)

Acute Myeloid Leukemia is not one disease

- AML subtypes can be recognized by recurrent (cyto)genetic abnormalities
- Recurrent (cyto)genetic defects are predictive for therapy outcome
- Fusion-genes are generated at the breakpoints of most translocations

Acute Myeloid Leukemia is not one disease

- AML subtypes can be recognized by recurrent (cyto)genetic abnormalities
- Recurrent (cyto)genetic defects are predictive for therapy outcome
- Fusion-genes are generated at the breakpoints of most recurrent translocations
- *Evil* gene regulation is a hallmark of AML

EVI1: an Evil gene in AML

- EVI1 (ecotropic virus integration-1) was first identified in mouse leukemia
- *EVI1* encodes a nuclear DNA binding zinc-finger protein
- EVI1 is overexpressed in 3q26/3q21 AML

Nuclear expression

Zinc finger protein

EVI1 in AML:

The Good Side of EVI1

EVI1 is a hematopoietic stem cell gene

Bindels et al. Blood 2012

EVI1 is a hematopoietic stem cell gene

EVI1 is expressed in dormant hematopoietic stem cells

(HSCs) in the mouse (Kataoka et al, J Exp Med, 2011)

 Evi1^{-/-} HSCs lose repopulating ability in mice (Goyama et al, Cell Stem cell 2008)

Germline loss of EVI1: Bone marrow failure

Bouman and others. Am. J. of Med. Gen., 2015

Germline EVI1 deletions in human: Bone marrow failure

Nielsen M et al. J Med Genet., 2012

Bone marrow failure and germline EVI1 deletion in humans

Deletion of the 3q26 region including the EVI1 and MDS1 genes in a neonate with congenital thrombocytopenia and subsequent aplastic anaemia. *Nielsen M and others. J Med Genet., 2012*

<u>Congenital thrombocytopenia</u> in a neonate with an interstitial <u>microdeletion of</u> <u>3q26.2q26.31</u> Bouman and others. Am. J. of Med. Gen., 2015

Lethal neonatal <u>bone marrow failure syndrome</u> with multiple congenital abnormalities, including limb defects, due to a constitutional <u>deletion of 3' MECOM</u>. *Buijs and others. Haematologica, 2018*

Congenital hypoplastic <u>bone marrow failure</u> associated with a de novo partial <u>deletion of the MECOM gene at 3q26.2</u>. *Kjeldsen E and others. Gene. 2018*

EVI1 balance is essential for HSC function

EVI1+ HSC

Healthy

EVI1⁻ HSC

No blood cell formation

EVI1 in AML:

The Evil Side of Evi1

AML with chromosome 3q26/3q21 aberrations

- EVI1 located on chromosome 3q26 is overexpressed
- **RPN1** (Ribophorin-1) resides on 3q21
- WHO 2008 : *RPN1-EVI1* AML

EVI1 overexpression in HSCs causes AML

With Mick Milsom, DKFZ, Heidelberg

Sca1-EVI1 transgenic mice are predisposed to develop AML

EVI1 balance is essential for HSC function

EVI1+ HSC

Healthy

EVI1⁻ HSC

No blood cell formation

Hypothesis: EVI1 is a molecular target for treatment of EVI1^{pos} AML.

Question: Is EVI1 essential for AML proliferation and survival?

EVI1^{pos} AML: EVI1 is essential for in vitro proliferation: knock-down (KD) experiment

Questions: What is the incidence of EVI1 overexpression in AML?

EVI1 is overexpressed in 10% of human AML

EVI1 expression is an independent prognostic factor

EVI1 expression is an independent prognostic factor

EVI1-pos: Chemotherapy + Allogeneic Stem Cell Transplantation

Question: Which AML subtypes express EVI1 and which not?

Distribution of EVI1 expression among AML subtypes.

Distribution of EVI1 expression among AML subtypes.

EVI1 is not expressed in AML with t(8;21), inv(16), t(15;17), CEBPA mutated, NPM1 mutated.

Question: What are mechanisms of EVI1 overexpression in AML?

EVI1 expression in AML with chromosome 11q23/MLL rearrangements.

Gene expression signatures correlate with mutations

750 Genes

MLL/11q23 mutant

MLL/11q23 mutant

Valk et al, NEJM, 2004

Gene expression signatures correlate with mutations

750 Genes

Valk et al, NEJM, 2004

EVI1^{pos} MLL-Rearranged AML: poor survival

Gröschel et al. J Clin Oncol 2013

No EVI1 rearrangements have been found in 11q23/MLL-rearranged AMLs

Question

Why is EVI1 expressed in a subset of *MLL*-rearranged AML?

MLL-AF9 transforms *EVI1*^{pos} HSCs and *EVI1*^{neg} GMPs

Adapted from Krivtsov et al. Leukemia 2013

MLL-AF9 transforms *EVI1*^{pos} HSCs and *EVI1*^{neg} GMPs

Adapted from Krivtsov et al. Leukemia 2013

Leukemia development of MLL-AF9 transformed HSCs versus GMPs in mouse

Krivtsov AV et al. Leukemia 2013

MLL-AF9 transformed HSCs express EVI1.

Krivtsov AV et al. Leukemia 2013

In vivo growth inhibition of MLL-AF9 mouse AML upon *EVI1* elimination.

E. M. J. Bindels et al. Blood 2012

EVI1 overexpression in MLL-rearranged AML

Conclusions

- MLL-fusion genes transform *EVI1^{pos}* HSCs.
- MLL-fusion maintains *EVI1* expression of transformed HSCs
- These leukemia cells depend on *EVI1*
- EVI1 is a potential target for treatment of MLL-rearranged AML

Question: What are the mechanism of aberrant *EVI1* expression in AML?

Proposed mechanism of EVI1 activation in AML with 3q26/3q21 aberrations

- Inv(3) causes aberrant EVI1 expression
- Inv(3) does <u>not</u> affect RPN1 expression
- No RPN1-EVI1 fusion-gene generated

Proposed mechanism of *EVI1* activation in AML with 3q26/3q21 aberrations

Question: Where are the breakpoints near *EVI1* and *RPN1* in AML with with 3q26/3q21 abnormalities?

Breakpoint identification in AML with 3q26/3q21 abnormalities

DNA from 41 AML samples with 3q26/3q21 aberrations

Next Generation Sequencing

Breakpoints near EVI1 at 3q26

3q26.2

chr3:168,429,537-169,385,778

Inv(3) breakpoints: 3' of EVI1
t(3;3) breakpoints: 5' of EVI1

Breakpoints at 3q21 near RPN1

Inv(3) breakpoints
t(3;3) breakpoints

41 AML patients

Active enhancers and promoters form a complex

Active enhancers and promoters form a complex

Active enhancers and promoters form a complex

P300 Chromatin immuno precipitation

P300 binding region of identified

Does the predicted 1000 bp enhancer activate EVI1 expression in inv(3) AML cells ?

Genome-editing in inv(3) AML - Hypothesis

Enhancer deleted clones generated using genome editing

CRISPR/Cas9

Enhancer deleted clones generated using genome editing

Enhancer deleted MUTZ-3 clones lose EVI1 expression

Question: What is the biological relevance of enhancer deletion?

Colony growth of enhancer deleted clones is impaired

Enhancer dislocation causes altered expression of two genes in AML with inv(3)

WHO: RPN1-EVI1 AML \rightarrow GATA2-EVI1 AML

HOW DOES THE ENHANCER DRIVE EVI1 OVEREXPRESSION?

Question: What are the mechanism of aberrant *EVI1* expression in AML?

EVI1 expression in remaining subsets

- Cryptic translocations (10 15%)*
- EVI1 amplifications (5-10%)*
- Unknown (75-80%)

* Enhancer rearrangement predicted

Perspective

Molecular-Biological Research — Specific treatment

• AML is a disease of defective gene regulation

 Understanding of the molecular mechanisms is needed for every AML subtype

• EVI1 is a potential molecular target for treatment

Perspective

Molecular-Biological Research ——— Specific treatment

CML APL

Prostate Cancer Breast Cancer Breast Cancer BCR-ABL PML-RAR

Testosterone levels Estrogen receptors HER2 protein Kinase inhibitors ATRA/Arsenic

LHRH agonists ER-antagonist Herceptin

Perspective

Molecular-Biological Research ——— Specific treatment

CML APL

Prostate Cancer Breast Cancer Breast Cancer BCR-ABL PML-RAR

Testosterone levels Estrogen receptors HER2 protein Kinase inhibitors ATRA/Arsenic

LHRH agonists ER-antagonist Herceptin

Aim and hope: AML

EVI1

????

Acknowledgments

Leonie Smeenk Sophie Ottema **Claudia Erpelinck** Andrea Arricibita Varea Roger Mulet Lazaro **Eric Bindels** Remco Hoogenboezem Marije Havermans Tim Grob **Roberto Avellino Bas Wouters Dorien Pastoors** Mathijs Sanders Stefan Gröschel

Peter Valk Ivo Touw Bob Löwenberg

Johannes Zuber

Hartmut Döhner Konny Döhner

